If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-26x-9=0
a = 6; b = -26; c = -9;
Δ = b2-4ac
Δ = -262-4·6·(-9)
Δ = 892
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{892}=\sqrt{4*223}=\sqrt{4}*\sqrt{223}=2\sqrt{223}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{223}}{2*6}=\frac{26-2\sqrt{223}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{223}}{2*6}=\frac{26+2\sqrt{223}}{12} $
| 3v+6+4v=13 | | -3n+48+-5=2n+2n | | 3x+2x+4=-22 | | (x+3)^2=961 | | y/1-3=11 | | -8g+48=4g | | 4z+20+z=180 | | -3n+48+-5n=2n+2n | | 2x+48+5x-7=90 | | v/2+2.1=-1.1 | | 6q=-3q+36 | | -4r+25=r | | 7m=-3m+40 | | -2m+12=4m | | 2/3x-4=5+2/3x | | 5.1=7x-6.1 | | 19=f/2-9 | | t/14-7=6 | | 1/3•+y=3 | | 6=t/2-4 | | l/2-1=8 | | 6+w/7.68=12 | | 11=c/16 | | v/13=13 | | 13+3x+10=23+6x | | 16=m/3 | | 6=n-15 | | (35/3y)=110 | | -3p=9-5 | | 2r=r | | Y=-2(8/3)x+6 | | (3x+5)=110 |